植物研究 ›› 2022, Vol. 42 ›› Issue (4): 613-625.doi: 10.7525/j.issn.1673-5102.2022.04.011
王雪莹1, 王瑞琪1, 张洋1, 刘聪1, 夏德安1, 魏志刚2(
)
收稿日期:2021-05-24
出版日期:2022-07-20
发布日期:2022-07-15
通讯作者:
魏志刚
E-mail:zhigangwei1973@163.com
作者简介:王雪莹(1996—),女,硕士研究生,主要从事林木遗传育种研究。
基金资助:
Xueying WANG1, Ruiqi WANG1, Yang ZHANG1, Cong LIU1, Dean XIA1, Zhigang WEI2(
)
Received:2021-05-24
Online:2022-07-20
Published:2022-07-15
Contact:
Zhigang WEI
E-mail:zhigangwei1973@163.com
About author:WANG Xueying(1996—),male,postgraduate,mainly engaged in forest tree genetics and breeding research.
Supported by:摘要:
植物环核苷酸门控离子通道(cyclic nucleotide-gated channels,CNGC)家族具有多种生物学功能,尤其是在植物的生长发育及逆境胁迫响应中发挥着重要的作用。本研究通过生物信息学方法及qRT-PCR对PtrCNGC家族成员蛋白的基本理化性质与结构特征、系统发育、基因结构和保守基序、启动子顺式作用元件,以及基因表达模式进行分析。结果表明:在毛果杨(Populus trichocarpa)全基因组中共鉴定出19个PtrCNGC基因,PtrCNGC家族成员可分为4个亚群(Ⅰ、Ⅱ、Ⅲ和Ⅳ亚群),其中第Ⅳ亚群分为2个亚组(Ⅳa组和Ⅳb组)。PtrCNGC基因编码的蛋白均为碱性蛋白,此外,该家族仅有1个成员为疏水性蛋白,其余成员全部为亲水性蛋白。19个PtrCNGC不均匀地分布于毛果杨的11条染色体上,剩余8条染色体上没有成员分布。PtrCNGC家族包含7对同源基因且它们之间的Ka/Ks值均远小于1。PtrCNGC家族各亚群成员之间的基因结构、蛋白保守基序分布差异较小。启动子顺式作用元件预测分析发现,PtrCNGC基因序列启动子区域存在响应多种激素以及逆境胁迫相关的作用元件。qRT-PCR结果表明,PtrCNGC家族在不同组织中的表达具有特异性,在茎中的表达量较高,在根和叶中的表达量较低;在盐胁迫和干旱胁迫下,PtrCNGC家族同一分支上的多数成员表现出相似的表达模式。本研究结果为进一步研究毛果杨CNGC家族在非生物胁迫中的功能提供参考。
中图分类号:
王雪莹, 王瑞琪, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨CNGC家族全基因组鉴定及胁迫响应分析[J]. 植物研究, 2022, 42(4): 613-625.
Xueying WANG, Ruiqi WANG, Yang ZHANG, Cong LIU, Dean XIA, Zhigang WEI. Genome‑wide Identification and Stress Response Analysis of Cyclic Nucleotide-gated Channels(CNGC) Gene Family in Populus trichocarpa[J]. Bulletin of Botanical Research, 2022, 42(4): 613-625.
表1
毛果杨 CNGC 家族基因qRT?PCR引物
基因名称 Gene name | 上游引物 Forward primer(5′→3′) | 下游引物 Reverse primer(5′→3′) |
|---|---|---|
| PtrCNGC1.1 | CAACCGAGGTGTATTGAAAGAAG | CCTGCCTACTATGAAGACGCC |
| PtrCNGC1.2 | CTCTTGAAACCACCGAGGCT | AGCAGCCCAAGTTCTCCATC |
| PtrCNGC2.1 | AAGGCTGGTGACTTCTGTGG | GTAATCGGCGAAACTGGGA |
| PtrCNGC3.1 | CGGACGAGGTGAACTTGTGAT | AGCGAGCAAACCTTGGGAT |
| PtrCNGC6.1 | GTTACAAATCCGCGTTTCGCC | TGTTGCATGACGCTCAATCG |
| PtrCNGC9.1 | CGGAAGGAGGCGACTGAC | ACAACACTTGAATCTGAGCCG |
| PtrCNGC12.1 | CTCGCAGCAGTGGAGAACAT | GGAACTCTATCTGGCACCCTT |
| PtrCNGC12.2 | CCAAGGCTGTGGAGGTTTACT | TGGCAGGCATCACGGAG |
| PtrCNGC13.1 | CTTTGCGAAATAGCATTGGAT | CAAGGTTGTGGCTACGAGATG |
| PtrCNGC14.1 | GTAGAGGAAATGCGGGTGAAG | AGCAAAGATGGCGGTTTATGT |
| PtrCNGC15.1 | GCTACATTGTTCGTGAGGGTG | CAGATTAGATGAGGAGTGGGGAT |
| PtrCNGC15.2 | GCGTTTGATTAGCAGCAGGA | CAGGCAACTTGAATGTGGGTA |
| PtrCNGC15.3 | GATTTCTGGACAGCGTTTGATTA | TTGATACCTTATGGCTCCTTGG |
| PtrCNGC17.1 | TGACTGTAGTGCCAAGGATAACC | CGGCAAACATCCCAAACTG |
| PtrCNGC17.2 | ACGCCAAGATGTGGAATGGT | GTCCTTCGGGCAGTTCTTCA |
| PtrCNGC17.3 | CGCTGTCAAACCCCGAAC | CGCACGAACGAGCAACTG |
| PtrCNGC18.1 | TCGTCAACTCCCTCAAAGTCTAC | CGTCTAACAAGGTCCAGGCAT |
| PtrCNGC18.2 | GGAAGAATGGAGACTCAAGCG | TCCATCTGTGAGAAAAAGGGC |
| PtrCNGC18.3 | TTCTCGGGTATTTGGGCG | AGCAGGATGATGTAAAGCAAGG |
| PtrActin | AGGCAGGTTTCGCAGGAGATGA | TCCATCACCAGAATCCAGCACA |
表2
毛果杨 CNGC 基因家族结构域
亚群 Group | 基因名称 Gene name | 登录号 Gene ID | 不同蛋白数据库中的结构域 Domain architectures in different databases | ||||
|---|---|---|---|---|---|---|---|
| Pfam | SMART | CDD | PROSIT | SurperFamily | |||
| Ⅰ | PtrCNGC2.1 | Potri.002G170000 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN |
| PtrCNGC14.1 | Potri.014G097900 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP,IQ | cAMP_bd-like,PLN | |
| PtrCNGC12.1 | Potri.012G002200 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN | |
| PtrCNGC15.1 | Potri.015G019100 | ITP,cNMP | cNMP TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN | |
| Ⅱ | PtrCNGC18.3 | Potri.018G106100 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP,IQ | cAMP_bd-like,PLN |
| PtrCNGC1.1 | Potri.001G043900 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN | |
| PtrCNGC3.1 | Potri.003G183000 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN | |
| Ⅲ | PtrCNGC9.1 | Potri.009G010700 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP,IQ | cAMP_bd-like,PLN |
| PtrCNGC13.1 | Potri.013G108200 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN | |
| PtrCNGC17.1 | Potri.017G067000 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN | |
| PtrCNGC18.2 | Potri.018G097600 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN | |
| PtrCNGC6.1 | Potri.006G271500 | ITP,cNMP | cNMP,TM | CAP-ED | cNMP | cAMP_bd-like,PLN | |
| PtrCNGC18.1 | Potri.018G009200 | ITP,cNMP | cNMP,TM | ITP,CAP-ED | cNMP | cAMP_bd-like,PLN | |
| Ⅳa | PtrCNGC12.2 | Potri.012G038700 | ITP | cNMP,TM | CAP-ED,PLN,ITP | cNMP | cAMP_bd-like,PLN |
| PtrCNGC15.2 | Potri.015G033900 | ITP,cNMP | cNMP,TM | PLN | cNMP | cAMP_bd-like,PLN | |
| PtrCNGC15.3 | Potri.015G034000 | ITP | cNMP,TM | CAP-ED,PLN,ITP | cNMP | cAMP_bd-like,PLN | |
| Ⅳb | PtrCNGC1.2 | Potri.001G407800 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN |
| PtrCNGC17.2 | Potri.017G089800 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN | |
| PtrCNGC17.3 | Potri.017G089900 | ITP,cNMP | cNMP,TM | CAP-ED,PLN | cNMP | cAMP_bd-like,PLN | |
表3
毛果杨 CNGC 家族概况
基因名称 Gene name | 登录号 Gene ID | 基因位置 Genomic location | cds长度 Length of cds /bp | 氨基酸长度 Amino acid length /aa | 等电点 pI | 分子质量 Molecular weight /kDa | 亲水性平均值 Grand average ofhydropathicity | 亚细胞定位预测(概率) Prediction of subcellular Localization(Percentage) |
|---|---|---|---|---|---|---|---|---|
| PtrCNGC1.1 | Potri.001G043900 | 3172345~3176133 | 2 238 | 745 | 9.15 | 86.026 09 | -0.266 | 细胞质(96.82%) |
| PtrCNGC1.2 | Potri.001G407800 | 43033745~43040720 | 2 055 | 684 | 8.77 | 78.532 21 | -0.119 | 细胞质(78.01%) |
| PtrCNGC2.1 | Potri.002G170000 | 12916136~12920918 | 2 187 | 728 | 9.15 | 84.103 14 | -0.193 | 细胞质(91.63%) |
| PtrCNGC3.1 | Potri.003G183000 | 18942476~18946581 | 2 220 | 739 | 8.98 | 85.236 32 | -0.193 | 细胞质(98.00%) |
| PtrCNGC6.1 | Potri.006G271500 | 27277609~27283688 | 2 076 | 691 | 7.53 | 79.603 33 | -0.226 | 细胞质(98.27%) |
| PtrCNGC9.1 | Potri.009G010700 | 1914122~1917753 | 2 238 | 745 | 9.27 | 85.463 00 | -0.131 | 细胞质(97.11%) |
| PtrCNGC12.1 | Potri.012G002200 | 206744~215632 | 2 130 | 709 | 9.03 | 82.008 80 | -0.149 | 细胞质(91.28%) |
| PtrCNGC12.2 | Potri.012G038700 | 3420369~3434999 | 2 310 | 769 | 9.23 | 88.215 84 | -0.113 | 细胞质(95.04%) |
| PtrCNGC13.1 | Potri.013G108200 | 12173969~12176818 | 2 055 | 684 | 9.32 | 79.382 80 | -0.096 | 细胞质(55.25%) |
| PtrCNGC14.1 | Potri.014G097900 | 7650920~7655559 | 2 172 | 723 | 9.45 | 83.918 28 | -0.220 | 细胞质(90.95%) |
| PtrCNGC15.1 | Potri.015G019100 | 1357777~1365061 | 2 127 | 708 | 9.11 | 81.738 42 | -0.150 | 细胞质(87.32%) |
| PtrCNGC15.2 | Potri.015G033900 | 2808538~2824047 | 2 346 | 781 | 9.42 | 89.048 90 | -0.113 | 细胞质(95.49%) |
| PtrCNGC15.3 | Potri.015G034000 | 2836520~2851182 | 2 358 | 785 | 9.53 | 89.681 54 | -0.132 | 细胞质(95.91%) |
| PtrCNGC17.1 | Potri.017G067000 | 7020102~7024372 | 2 067 | 688 | 9.16 | 79.682 99 | -0.141 | 过氧化物酶体(50.67%) |
| PtrCNGC17.2 | Potri.017G089800 | 10685838~10690733 | 2 157 | 718 | 9.49 | 82.019 61 | -0.022 | 细胞质(54.87%) |
| PtrCNGC17.3 | Potri.017G089900 | 10744470~10751288 | 2 118 | 705 | 9.55 | 81.146 94 | 0.035 | 细胞质(80.80%) |
| PtrCNGC18.1 | Potri.018G009200 | 639720~644438 | 2 163 | 720 | 9.12 | 82.685 22 | -0.148 | 细胞质(91.75%) |
| PtrCNGC18.2 | Potri.018G097600 | 12595117~12608310 | 2 184 | 727 | 9.19 | 83.793 61 | -0.236 | 细胞质(96.75%) |
| PtrCNGC18.3 | Potri.018G106100 | 13287094~13300441 | 2 205 | 734 | 9.31 | 84.049 79 | -0.217 | 细胞质(98.37%) |
表4
同源基因的 Ka/Ks 比值及同源性
同源基因 Paralogues | 非同义替换率 Ka | 同义替换率 Ks | Ka/Ks | 同源片段长度 The length of homologous fragment /bp | 同源性 Homology /% | |
|---|---|---|---|---|---|---|
基因1 Gene 1 | 基因2 Gene 2 | |||||
| PtrCNGC1.1 | PtrCNGC3.1 | 0.056 975 | 0.220 971 | 0.257 839 | 2 026 | 90.53 |
| PtrCNGC2.1 | PtrCNGC14.1 | 0.061 054 | 0.219 205 | 0.278 523 | 1 981 | 90.37 |
| PtrCNGC6.1 | PtrCNGC18.1 | 0.094 621 | 0.306 729 | 0.308 484 | 1 355 | 89.97 |
| PtrCNGC12.1 | PtrCNGC15.1 | 0.043 307 | 0.211 946 | 0.204 330 | 1 972 | 90.53 |
| PtrCNGC12.2 | PtrCNGC15.2 | 0.115 981 | 0.274 512 | 0.422 499 | 1 572 | 85.62 |
| PtrCNGC15.3 | 0.096 435 | 0.267 658 | 0.360 292 | 1 604 | 87.36 | |
| PtrCNGC15.2 | PtrCNGC15.3 | 0.059 375 | 0.109 146 | 0.543 996 | 2 198 | 93.06 |
| 1 | YUEN C C Y, CHRISTOPHER D A.The group Ⅳ-A cyclic nucleotide-gated channels,CNGC19 and CNGC20,localize to the vacuole membrane in Arabidopsis thaliana [J].AoB Plants,2013,5:plt012. |
| 2 | 杨朝东,张霞,刘国锋,等.植物根中质外体屏障结构和生理功能研究进展[J].植物研究,2013,33(1):114-119. |
| YANG C D, ZHANG X, LIU G F,et al.Progress on the structure and physiological functions of apoplastic barriers in root[J].Bulletin of Botanical Research,2013,33(1):114-119. | |
| 3 | SCHUURINK R C, SHARTZER S F, FATH A,et al.Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95(4):1944-1949. |
| 4 | NAWAZ Z, KAKAR K U, ULLAH R,et al.Genome-wide identification,evolution and expression analysis of cyclic nucleotide-gated channels in tobacco(Nicotiana tabacum L.)[J].Genomics,2019,111(2):142-158. |
| 5 | NAWAZ Z, KAKAR K U, SAAND M A,et al.Cyclic nucleotide-gated ion channel gene family in rice,identification,characterization and experimental analysis of expression response to plant hormones,biotic and abiotic stresses[J].BMC Genomics,2014,15(1):853. |
| 6 | HAO L D, QIAO X L.Genome-wide identification and analysis of the CNGC gene family in maize[J].PeerJ,2018,6(3):e5816. |
| 7 | SAAND M A, XU Y P, LI W,et al.Cyclic nucleotide gated channel gene family in tomato:genome-wide identification and functional analyses in disease resistance[J].Frontiers in Plant Science,2015,6:303. |
| 8 | CHEN J Q, YIN H, GU J P,et al.Genomic characterization,phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear(Pyrus bretchneideri Rehd.)[J].Genomics,2015,105(1):39-52. |
| 9 | MÄSER P, THOMINE S, SCHROEDER J I,et al.Phylogenetic relationships within cation transporter families of Arabidopsis[J].Plant Physiology,2001,126(4):1646-1667. |
| 10 | KÖHLER C, MERKLE T, NEUHAUS G.Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana [J].The Plant Journal,1999,18(1):97-104. |
| 11 | ZELMAN A K, DAWE A, GEHRING C,et al.Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels[J].Frontiers in Plant Science,2012,3:95. |
| 12 | 王文颖,柴薇薇,马清,等.植物环核苷酸门控离子通道的研究进展[J].植物生理学报,2015,51(11):1799-1808. |
| WANG W Y, CHAI W W, MA Q,et al.Research advances in cyclic nucleotide-gated channels in plant[J].Plant Physiology Journal,2015,51(11):1799-1808. | |
| 13 | 刘海娇,杜立群,林金星,等.植物环核苷酸门控离子通道及其功能研究进展[J].植物学报,2015,50(6):779-789. |
| LIU H J, DU L Q, LIN J X,et al.Recent advances in cyclic nucleotide-gated ion channels with their functions in plants[J].Bulletin of Botany,2015,50(6):779-789. | |
| 14 | CHANG F, YAN A, ZHAO L N,et al.A putative calcium-permeable cyclic nucleotide-gated channel,CNGC18,regulates polarized pollen tube growth[J].Journal of Integrative Plant Biology,2007,49(8):1261-1270. |
| 15 | 许扬.水稻控制花粉管生长基因OsCNGC13的图位克隆及功能分析和水稻卷叶基因OsZHD1的功能研究[D].南京:南京农业大学,2016. |
| XU Y.Map-based cloning and functional analysis of OsCNGC13 gene controling pollen tube growth and functional analysis of abaxially cured leaf gene OsZHD1 in rice(Oryza sativa L.)[D].Nanjing:Nanjing Agricultural University,2016. | |
| 16 | 董紫怡.拟南芥CNGC2蛋白的胞吞及其在抗病中的作用[D].北京:北京林业大学,2019. |
| DONG Z Y.Endocytosis of CNGC2 and its role in disease resistance in Arabidopsis [D].Beijing:Beijing Forestry University,2019. | |
| 17 | 林世锋,王仁刚,余婧,等.一个受青枯病菌诱导的烟草功能基因NtCNGC1的克隆与表达分析[J].中国烟草学报,2018,24(6):86-92. |
| LIN S F, WANG R G, YU J,et al.Cloning and expression analysis of a tobacco functional gene NtCNGC1 induced by Ralstonia solanacearum [J].Acta Tabacaria Sinica,2018,24(6):86-92. | |
| 18 | 段琼,王晓宇,霍红雁,等.蓖麻环核苷酸门控离子通道RcCNGC2克隆与盐胁迫下表达分析[J].华北农学报,2020,35(4):79-86. |
| DUAN Q, WANG X Y, HUO H Y,et al.Cloning and characterization of RcCNGC2 gene of Ricinus communis L.cyclic nucleotide-gated channel expression analysis under salt stress[J].Acta Agriculturae Boreali-Sinica,2020,35(4):79-86. | |
| 19 | TUSKAN G A, DIFAZIO S, JANSSON S,et al.The genome of black cottonwood,Populus trichocarpa(Torr.& Gray)[J].Science,2006,313(5793):1596-1604. |
| 20 | HALL T A.BioEdit:a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT[J].Nuclc Acids Symposium Series,1999,41:95-98. |
| 21 | CHEN C J, CHEN H, ZHANG Y,et al.TBtools:an integrative toolkit developed for interactive analyses of big biological data[J].Molecular Plant,2020,13(8):1194-1202. |
| 22 | TAMURA K, STECHER G, PETERSON D,et al.MEGA6:molecular evolutionary genetics analysis version 6.0[J].Molecular Biology and Evolution,2013,30(12):2725-2729. |
| 23 | BLANC G, WOLFE K H.Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[J].The Plant Cell,2004,16(7):1667-1678. |
| 24 | WANG L Z, HU W, SUN J T,et al.Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9 [J].Plant Science,2015,237:33-45. |
| 25 | LYNCH M, CONERY J S.The evolutionary fate and consequences of duplicate genes[J].Science,2000,290(5494):1151-1155. |
| 26 | LESCOT M, DÉHAIS P, THIJS G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Research,2002,30(1):325-327. |
| 27 | 陆业磊,邓为,王震,等.高粱SPL基因家族的鉴定及表达分析[J].生物资源,2020,42(4):444-453. |
| LU Y L, DENG W, WANG Z,et al.Identification and expression analysis of SPL gene family in Sorghum bicolor L.[J].Biotic Resources,2020,42(4):444-453. | |
| 28 | KONG H Z, LANDHERR L L, FROHLICH M W,et al.Patterns of gene duplication in the plant SKP1 gene family in angiosperms:evidence for multiple mechanisms of rapid gene birth[J].The Plant Journal,2007,50(5):873-885. |
| 29 | HOLUB E B.The arms race is ancient history in Arabidopsis,the wildflower[J].Nature Reviews Genetics,2001,2(7):516-527. |
| 30 | LI Q Q, YANG S Q, REN J,et al.Genome-wide identification and functional analysis of the cyclic nucleotide-gated channel gene family in Chinese cabbage[J].3 Biotech,2019,9(3):114. |
| 31 | ZHU L C, ZHANG Y, ZHANG W,et al.Patterns of exon-intron architecture variation of genes in eukaryotic genomes[J].BMC Genomics,2009,10(1):47. |
| [1] | 黄安瀛, 夏德安, 张洋, 那冬晨, 燕青, 魏志刚. PtrWRKY51基因的克隆及抗旱表达特性分析[J]. 植物研究, 2022, 42(6): 1005-1013. |
| [2] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StCRKs基因家族的鉴定分析及响应逆境信号的表达[J]. 植物研究, 2022, 42(6): 1033-1043. |
| [3] | 程赫, 田双慧, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨nsLTP基因家族全基因组水平鉴定及其表达特性分析[J]. 植物研究, 2022, 42(3): 412-423. |
| [4] | 杨宇宁, 董昊, 董实伟, 王乃锐, 宋跃, 张含国, 李淑娟. 长白落叶松转录因子LobHLH34克隆及表达分析[J]. 植物研究, 2022, 42(1): 112-120. |
| [5] | 赵佳明, 樊二勤, 刘轶, 王智, 王军辉, 曲冠证. 楸树CbuATX1,CbuATX1-like和CbuATX2基因克隆及生物信息学分析[J]. 植物研究, 2022, 42(1): 47-61. |
| [6] | 田双慧, 程赫, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J]. 植物研究, 2021, 41(6): 993-1005. |
| [7] | 彭淑萍, 董诚明, 朱畇昊. 响应内生菌侵染的两个地黄茉莉酸合成关键基因的克隆与表达分析[J]. 植物研究, 2021, 41(2): 294-301. |
| [8] | 任梦轩, 张洋, 王爽, 王瑞琪, 刘聪, 魏志刚. 毛果杨GATA基因家族全基因组水平鉴定及表达分析[J]. 植物研究, 2021, 41(1): 107-118. |
| [9] | 李冰, 程玉祥. 杨树SHMT基因家族分析及PtrSHMT9突变体创制[J]. 植物研究, 2020, 40(6): 906-912. |
| [10] | 王文林, 陈海生, 郑树芳, 樊松乐, 王立丰, 谭秋锦, 覃振师, 黄锡云, 贺鹏, 汤秀华, 许鹏. 澳洲坚果MiMYB2基因克隆及结构与功能分析[J]. 植物研究, 2020, 40(6): 913-922. |
| [11] | 董实伟, 杨宇宁, 王乃锐, 张含国, 李淑娟. 毛果杨固有无序蛋白质基因克隆及胁迫响应分析[J]. 植物研究, 2020, 40(4): 575-582. |
| [12] | 李亚博, 吕佳欣, 谭冰, 高彩球. 5个毛果杨PtrZFP基因的鉴定和表达分析[J]. 植物研究, 2020, 40(2): 243-250. |
| [13] | 王琪, 许志茹, 陈瑾元, 张双, 黄佳欢, 刘关君. 杨树重金属相关异戊二烯化植物蛋白(HIPPs)基因的鉴定及表达分析[J]. 植物研究, 2019, 39(6): 935-946. |
| [14] | 白晓明, 董实伟, 杨宇宁, 宋跃, 张含国, 李淑娟. 长白落叶松过氧化氢酶LoCAT1基因克隆及表达分析[J]. 植物研究, 2019, 39(4): 539-546. |
| [15] | 孙晓莎, 王遂, 赵曦阳, 曲冠证. 84K杨4CL3/4CL5基因克隆及生物信息学分析[J]. 植物研究, 2019, 39(4): 547-556. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||